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239 

Hyung Jip Choi* 
(Received May 18, 1996) 

The mode I interaction of a periodic array of parallel  cracks which are uniformly spaced apart  

in a functionally graded material is investigated. The two-dimensional theory of non- 

homogeneous elasticity is employed as the basic framework for this study. The material 

nonhomogeneity is represented in terms of the spatial  variation of the shear modulus in the 

exponential form along the direction of cracks, while Poisson's ratio is assumed to be constant. 

Formulation of the proposed mixed boundary value problem is reduced to solving a hypersin- 

gular integral equation with the crack surface displacement as a new unknown function. As a 

result, the variations of stress intensity factors are illustrated as a function of possible range of 

periodic crack spacing in conjunction with the different values of the material nonhomogeneity 

parameter. Furthermore, crack opening displaccements are presented for various geometric and 

material combinations. 
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Properties, Hypersingular Integral Equation, Stress Intensity Factors 

I. Introduction 

As a new class of materials, functionally graded 

composites are evolving in which the micros- 

tructu~:e is tailored in accordance with a predeter- 

mined composition profile to produce a continu- 

ous gradient or a gradual variation of  properties 

with position (Koizumi, 1993). For instance, the 

graded thermomechanical properties obtained 

through the mixture of metals and ceramics 

exhibit material nonhomogeneities that can be 

effectively utilized to take advantage of both the 

high temperature characteristics of ceramics, and 

the fracture toughness capabilites of  metals. The 

analysis of functionally graded materials can 

therefore be performed on a nonhomogeneous 

continuum basis. 
Motivated by potential technological advances 

that can be achieved using this highly promising 
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novel material system, especially in elevated ther- 

mal environments, considerable research effort is 

currently being directed toward resolving a vari- 

ety of  challenging issues in functionally graded, 

nonhomogeneous materials. This is because most 

existing theories and databases are for materials 

that possess uniform thermomechanical prop- 

erties. In particular in the area of related fracture 

mechanics problems, Erdogan and his coworkers 

(e.g., Delale and Erdogan, 1983, 1988; Ozturk and 

Erdogan. 1993; Erdogan and Wu, 1993; Konda 

and Erdogan, 1994) have provided solutions to 

some basic boundary value problems entailing a 

crack in nonhomogeneous materials  under 

mechanical loads, based on the premise that 

fatigue and fracture analysis and characterization 

of  the new material system require the solutions 

to certain standard crack problems. Other previ- 

ous investigations dealing with various forms of 

material nonhomogeneity are due to Dhaliwal 

and Singh (1978), Gerasoulis and strivastav 

(1980), Schovanec (1986), Ang arid Clements 

(1987) and Eischen (1987). The aforementioned 
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pioneering contributions have been later extended 

by Jin and Noda (1933) and Noda and Jin (1994) 

to include thermoelastic effects. 

Although several issues related to certain crack 

problems for func t iona l ly  graded,  non- 

"homogeneous media have been resolved, the 

studies mentioned above are concerned with rela- 

tively simple cases of a single isolated crack or 

antiplane shear. The objective of this paper is to 

investigate the mode I problem of a periodic array 

of parallel cracks that are uniformly spaced apart 

in functionally graded media, using the theory of 

nonhomogeneous plane elasticity as our basis. 

Specifically, the shear modulus is assumed to vary 

exponentially in the direction of the cracks, and 

to simplify the analysis, Poisson's ratio is taken to 

be constant. Readers are referred to Benthem and 

Koiter (1973), Bowie (1973) and Nied (1987) for 

the solutions to similar problems of an infinite 

array of cracks in homogeneous media. By defin- 

ing the crack surface siaplacement as an unknown 

auxiliary function, an integral equation with a 

strongly singular kernel is derived. Such a hyper- 

singular integral equation is solved numerically 

by employing the concept of singular integrals 

interpreted in the finite-part sense (Hadamard, 

1952). The stress intensity factors are defined 

from the stress fields that have square root singu- 

lar behavior ahead of the crack tips and are 

evaluated in terms of the solutions to the integral 

equatiion. The main results presented are the 

variatios of stress intensity factors and crack 

opening displacements for different values of the 

nonhomogeneity parameter and the range of 

crack spacing. 

2. Problem Statement  and Formulation 

Consider the system configuration illustrated 

schematically in Fig. 1, where an infinite array of 

cracks of identical length 2a are aligned parallel 

to the x-direction and equally spaced apart a 

distance 2h along the y-direction. For both con- 

venience of analysis and practical considerations, 

the material nonhomogeneity of the functionally 

graded medium is represented such that the shear 

modulus /, and Poisson's ratio v are approximat- 

Y 

I ' ' 

3-  
2h 

r h (-a,O) (~,o) 

F i g .  1 

/fix) =/*o e Bx, v = constant 

Schematic representation of a periodic array of 
parallel cracks in a nonhomogeneous medium 

ed as (Delale and Erdogan, 1983; Noda and Jin, 

1994) 

tl( x )=  /zoe ~x, v=-constant (1) 

where ~ is the nonhomogeneity parameter and/-to 

is the shear modulus at x = 0 ,  i.e., ~uo=Eo/2(1 

+ ~) in which Eo corresponds to the constant 

elastic modulus. 

With u ( x , y )  and v (x , y )  denoting the displace- 

ment in the x -  and y -d i r ec t ions  respectively, 

the governing equilibrium equations correspond- 

ing to the variable shear modulus in Eq. (1) are 

expressed as 

. 2 / 32u  . c~2v \ 
v2" l t, 7* aT&-) 

+ W_a 1 [(, + : 0  (2) 

V2 . 2 /' 32u . c?2v\ 

au 3v 

where x = 3 - - 4 v  for the state of plane and x = ( 3  

- -  v) / (1 § v) for the state of plane stress. 

The general expressions of displacement com- 

ponents are readily obtained by as follows solving 

the above system of governing equations: 

'fL l u(x ,  y ) = ~  -~ = F~m~e "'y . . . .  ds (4) 
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v(x,  Y ) = 2 7  ---= &e~'Y-**~ds (5) 

The stress components are obtained from the 

constitutive equations as 

O'xx( X, y ) =  2 z ( * - - l )  ~ ,=[ (3- -* ' )n j - -  i "  

(1 +x)sm~]F~e"y-'sxds (6) 

Z zoe'~ : Z ~ [ ( l + x ) n s _  i . o)y(x, y ) =  2 z ( x -  1) 

( 3 -  x)sms]Fje~"-~'~ds (7) 

** ~ B x  F ~  4 

r~r(x, y ) : a e f ~ u - j _ . , ~ ( m : s -  is) " 

& e  n,y- i,~ds (8) 

where s is the Fourier transform variable, Fj (s) ,  

j = l ,  . . . ,  4, are arbitrary unknowns, i - - ( - 1 )  ~/z, 

and ha(s), j =  1 .. . .  ,4 ,  are the roots of the charac- 

teristic equation: 

[ 3--X ~a2n2=o [n z -  s(s + ifl)]2_ \ 1 ~ ]  (9) 

It can be shown that 

l _ ): f l ~ + 3 c o s O + z ~ s , n O ] ;  - ~ - V ( - l  +1 3 - x  . . /gd=: 

Re(ns) <0,  j--- 1,2 (10) 

1 "+1 3--x 8-1; n , = : - ~ - [ ( - 1 )  ~ fl~/~-~-x--ScosO-iSsin 
_J 

Re(hi) >0, j = 3 , 4  (11) 

where O(s) and ~(s) satisfy 

4&(l +x )  
tan 20=.f12(3_ x)+4s2(1 -+ x) (12) 

3 = { [ f l z ( ~ . ) q - 4 S z ] z + 1 6 f l Z s 2 }  t:4 (13) 

and m~(s), j =  1 . . . . .  4, are expressed as 

m , -  ( 1 + x ) n ~ +  ( 1 - x ) ( s  + i f l ) s  
- -  n~[2 i s+ f l ( l - x ) ]  (14) 

The medium in Fig. 1 is assumed to be loaded 

at y=+_oo in the tensile mode. The locations y:= 

( 2 k + l ) h ,  k = 0 ,  _+I, _+2 . . . . .  are then the planes 

of geometric and material symmetry along which 

the proper boundary conditions should satisfied, 

together with the self-equilibrated equivalent 

crack surface tractions. Consequently, for this 

mode I crack problem, it is sufficient to consider 

an infinte strip [yl-<h under the following set of 

boundary conditions: 

v ( x  h) = rx,(x, h) =o: Ixl < <~ (l 5) 

rxy(X, 0) :0 ;  I x l < ~  (16) 

a . ( x ,  0)=a(x) ,  Ixl<a (17) 

v(x, 0)=0; [xl>a (18) 

where a(x) describes the crack surface traction 

which acts as the only nonzero external load. 

The four unknowns b~-(s), j =  I ..... 4, involved 

in the general solutions of elasticity equations can 

be obtained by applying the three homogeneous 

conditions in Eqs. (15) and (16) and the mixed 

conditions in Eqs. (17) and (18). 

2.1 Singular integral equation 
Solving the current crack problem entails the deri- 

vation of a certain integral equation. To this end, a 
new unknown function is defined as 

r  + O ) - v ( x , - 0 )  
=2v(x ,  0); Ix[<a (19) 

r  Ixl >a (20) 

and the applications of conditions in Eqs. (15), 
(16) and (19) allow the unknowns F~(s), j - - I  ..... 
4, to be obtained in terms of r Such an 
auxiliary function then becomes the only un- 
known that is to be determined from the remain- 
ing crack surface condition in Eq. (17). 

After substituting the required unknowns as 
obtained in the above into Eq. (7), followed by 
some algebraic manipulations, the boundary con- 
dition in Eq. (17)can be written in the form of an 
integral equatiion: 

ayy(X, 0) = a (x)  

. . . .  / l~  ~all(x, t)~(t)dt: 
2 z ( x -  1) 

]xl<a (21) 

where H(x ,  t) is the kernel function 

H(x, t ) = f _ ' A ( s ) e  's" ~'d,~ (22) 

in which the integrand A(s)  is an intricate func- 

tion of the elastic modulus and the geometry of  

the nonhomogeneous material as well as the 

Fourier  transform variable s. 

Subseqently, in order to investigate the singular 
nature of the integrl equation in (21), the 

asymptotic behavior of the integrand of the func- 



242 Hyung Jip Choi 

tion H(x ,  t) should be determined. Upon observ- 

ing the behavior of nj(s)  and mr(s), j =  1,...4, for 

large values of ]sl as 

lim isl-~ t s l .=n j ( s )=- l im  nj+2(s)=--[sl; j =  1, 2 (23) 

lim - - l i r a  Isl-~ m~(s)= Isl m~+2(s)=i sgn(s); j = l ,  2(24) 

where sgn( �9 ) is the signum function, it can be 

further shown that the integrand A(s)  has the 

asymptotic property as Isl tends to infinity such 

that 

lim A ( s ) = A ~ ( s )  (25) 

where the real and imaginary parts of the 

asymptotic value A=(s) are given as 

1 x 
Re A~(s )=2 l s [ (  l §  ) (26) 

Im A ~ ( s ) = 0  (27) 

The foregoing asymptotic analysis makes it 

clear that any singularity the kernel H(x ,  r in 

Eq. (22) may have arises from the limiting behav- 

ior of A(s) as Is] approaches infinity. After separ- 

ating the sigular part from the kernel and using 

the derivative of the Fourier integral representa- 

tion of a generalized function (Friedman, 1969) 

d / ' ~  2i 
dx .] ~ sgn( s )e'~`'-~' ds = ( l -- x ) 2 (28) 

the integral equation for q~(t) can be derived as 

f ~ ~(t) m 
~ ( t_x )2 .~  + f~p(x, t)~(t)dt 

_ gr(I + x )  a(x) ;  ] x ] < a  (29) 
21~oe r 

where p(x, t) is a bounded kernel written as 

p(x, t)= - ~ \  Tz_x-/�9 

f : [A ( s ) - -A=(s ) ]e i*" -X 'ds  (30) 

The first term in Eq. (29) is the integral with a 

strongly singular kernel 1 ~ ( t - x )  2 that is to be 
interpreted as a finite-part integral in the sense of  

Hadamard (1952). With such dominant  behavior 

of the kernel being regarded as hypersingular, it 

can be shown that the fundamental solution of the 

integral equation corresponds to the weight func- 

tion of the Chebyshev polynomial  of the second 

kind U~ (Kaya, 1984). In the normalized interval 

~ = x / a  and z2= t /a ,  the solution to the integral 

equation can therefore be expressed as 

~(az2)=g(z2)~/l-- z22 ; Iz2]< l (31) 

where g(z2) is a bounded function which is non- 

zero at z2 = + 1, and can be approximated in terms 

of  a truncated series of U/7 such that 

N 

g(~7)= ~ c.U.(~7) (32) 
/7=0 

in which c., O<-n<-N, are the unknown con- 

stants, which once evaluated can be directly used 

in conjunction with Eq. (19) to determine the 

shape of crack opening displacements. 

Upon substituting Eq. (31) into Eq. (29) and 

using the following finite-part integral formula 

(Kaya, 1984) 

f 11Un(  l])~/ ] -- 712 (~_~)2  d~7=-Tr(n+l)U.(~e);  

n ~ 0 ,  I~[<  1 (33) 

the integral equation can be recast into functional 

form as 

N 

Z c, , [ -  a-(n + 1)U.(~)+h,(~)] 
n - 0  

_ ~-( l  + x ) a  . . . .  I ~ 1 <  1 (34 )  21~oCPa~ 6(ar 

where the function h/7(~ e) is expressed as 

h . (~)=a2f l lP(ae ,  a~)U.(~7)~/l- ~72d~ (35) 

A collocation technique is employed to solve 

the above functional equation for c.. O<-n<-N. 
Because of the nature of the problem and to 

ensure rapid convergence of results, the density of 

the collocation points near the singular points ~e 

=_+l  must be increased. An appropriate set of 

collocation points ~z which are concentrated near 

such end points is selected as 

TN+,(~i)=O, ~i=COS(2i+ I ~r) 
N + 1 2 ;  

i = 0 ,  1, 2 . . . . .  N (36) 

where TN+~ is the Chebyshev polynomial of the 

first kind. A system of N + I  linearly independent 

equations to be solved for the N + I  unknown 

constants c, , O<~n<-N, is then obtained by 

evaluating the equaion in (34) at N + I  station 
points e .  
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2.2 Stress intensity factors 
It was demonstrated in a rigorous manner by 

Delale and Erdogan (1983, 1988) that the singular 

behavior as well as the angular distribution of 

stresses around the crack tip in nonhomogeneous 

materials is identical to that in homogeneous 

materials, when the spatial distribution of elastic 

material properties is simply continuous near and 

at the crack tip. As a result, on the basis of this 

statement and the observation that the left-hand 

side of the integral equation in (29) provides the 

traction component ayy(x, 0) on the entire x-axis, 

the mode I stress intensity factors K~(+a) at the 

crack tips x = • a are defined as 

K f f + a ) = l i m ~ ( x - a )  ayy(X, 0); x > a  (37) 

K f f - a ) = l i m J - 2 ( - x - a )  ayy(X, 0); X <  - - a  (38) 

and, from Eqs. (29) and (31), can be evaluated in 

terms of r to 

K,( + a) = - 2 . ~ ~  lira eaX , , - x  . . . .  ~ r  
N 

2#~ ~ ( n + l ) c ~  (39) 
, / ~ ( I  + x )  ,,:o 

K,( - a) = l @ x  [)m 
C~ x 

- -  2 , + ~ + + x ~  r 
N 

-- 2f f~  ~:2( [ )~ (n+l )c , ,  (40) 
, [a(  l + x )  ~:~ 

In addition, from Eqs. (19) and (31), the crack 

opening displacement can be obtained as 

N X (41) 

3. Results and Discussion 

Numerical results are obtained for the two 

types of loading that involve the prescribed strain 

and traction. Fixed-grip strain loading is then 

assumed in the absence of cracks as syy(x, +--ee) 
=r  where the first constant and the 

second linear terms, respectively, correspond to 

the uniform strain and the bending applied at y =  

_+~. Hence, via a proper superposition, the 

equivalent crack surface traction in Eqs. (17) and 
(29) can be exressed as 

a,.,(x, 0 ) = a ( x )  

2.4 

2.0 
I..L 
�9 ~ 1.6 

1.2 
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0.4 

Z 
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~!i "4 0.2 

0.0 

0.4 . . . .  " " - .  
c 0.6 . . . .  " " - - . " - .  
o.8 . . . .  -'. ': '--'--..'--. 

-I.0 

0 . 0  0.2 0,4 08 0.8 1.0 
F -  a / ( a §  

Variation of normalized stress intensity factors Kt 

(~-a)/Ko with the crack spacing F =  a/(a + h) for 

different values of the nonhomogeneity parameter 

/5'a under uniform strain so: a(x) . . . .  8eo/Zoe~X/(I 

+ x )  and v=0.3 

,42, 

and for the sake of comparison, a uniform trac- 

tion do applied on the crack surface is also 

assumed: 

ayv(x, 0 ) =  d(x) = - o'o; Ix[ < a (43) 

For the loading conditions as described above, 

the resulting values of normalized stress intensity 

factors K~(• are illustrated in Figs. 2- -4  as 

a function of the geometric ratio F = a / ( a + h )  for 

different values of the dimensionless non- 

homogeneity parameter /5'a. The normalizing fac- 

tors Ko for each of the landings are specified as 

follows: 

Ko=8eolzo~f-a/(l +x)  for the uniform strain 

loading So (44) 

Ko=Sel l2o~a/( l+x)  for the linear strain 

loading (x/ale1 (45) 

Ko--ao,/a for the uniform traction loading 

do (46) 

which are the stress intensity factors for the case 

of a single isolated crack ( [ ' = O 0 )  in an infinite 

homogeneous plane (fla=0.0), 

A state of plane strain is assumed with Poisson's 
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ratio set to v =0.3. In the examples considered, as 

many as forty terms in Eqs. (34) and (36) are 

required to ensure accurate solutions, due to the 

rather slow convergence for large values of ~a. 

The integralsin Eqs. (30) and (35) are evaluated 

by employing the Gauss-Legendre and Gauss- 

Chebyshev quadratures, respectively (Davis and 

Rabinowitz, 1984). One remark at this point is 

that the difference between the plane strain and 

plane stress solutions is negligible, being at most 

less than one percent when the degree of material 

nonhomogeneity and the crack spacing are rela- 

tively large, eg., ~a = t.0 and F = 0 .  I. 

To confirm the soundness and validity of our 

analytical procedure and numerical results, the 

values of stress intensity factors are checked with 

the special cases available in the literature. Specif- 

ically, the present results for a homogeneous 

material with /3'a=0.0 are in excellent agreement 

with those compiled by Murakami (1987) and/or  

Rooke and Cartwright (1976), while the values 

obtained for nonhomogeneous materials with ~a 

=#0.0 are similar to those given by Dalale and 

Erdogan (1983) when the ratio F' approaches 

zero, as demonstrated in Tables 1 and 2. 

The stress intensity factors obtained for the 

uniform strain So are plotted in Fig. 2. To be 

observed from this figure is that the crack tips at 

x = + a  which are on the stiffer side of the 

material are, in general subjected to greater stress 

intensification as an increasing function of the 

nonhomogeneity parameter /~a over the given 

range of f ' .  On the other side of the crack tips at 

x = - a ,  however, the severity of such stress inten- 

sity factors is alleviated as ~a increases. Such an 

effect of /~a is shown to be more pronounced 

when the cracks are spaced further apart. In 

particular, the decrease in the crack spacing, in 

conjunction with ~a, results in the variation of 

crack interactions such that the magnitudes of 

stress intensity factors are substantially reduced as 

F' approaches unity, to a level well below those 

for a single crack of the same length. This trend is 

most noteworthy for the crack tips x =  + a when 

~ a =  1.0. 

Under the sole application of a linear strain 

component ( x /a )&,  Fig. 3 predicts the negative 

stress intensity factors at x =  a due to the 

antisymmetry of the applied loading, implying 

compressive singular stresses and the closure of 

cracks. Even though the implicit assumption of 

frictionless and open cracks may therefore be 

invalidated, such negative values can be useful 

when the superposition due to a sufficiently large 

Table 1 Normalized stress intensity factors Kff+_a)/Ko in a homogeneous material Uga=0.0) for different 
values of the crack spacing F = a/(a + Iz) under uniform loadings: (r(x) -- - 8eolLo/( 1 + :c) for uniform 
strain so or o(x)----Oo for uniform traction do and v=0.3 

F=0.1 F - 0 . 2  F - 0 . 3  F=0.4 F=0.5 

Present RefJ § Present Ref. Present Ref. Present Ref. Present Ref. 

0.9851 0 . 9 8 5 1  0 . 9 3 0 9  0 . 9 3 1 8  0 . 8 3 1 1  0 . 8 3 1 5  0 . 7 0 0 5  0 . 7 0 0 5  0 . 5 7 0 2  0.5703 

(+): Murakami (1987) 

Table 2 Normalized stress intensity factors/{1(-+ a)/Ko for a periodic array of parallel cracks (f '>0.0) and a 
single isolated crack (F>0.0) for the nonhomogeneity parameter /~a--1.0 under uniform Ioadings: 
o(x)=--Seo/loe~X/(1 +z )  for uniform strain Eo, a ( . r ) = - n o  for uniform traction o~o and v--0.3 

Types of F=0.3 F=0.2 F=0.1 F=0.0 ~*) 
loading K~( + a)/ Ko K~(- a)/ Ko 

Uniform 
1.8781 0.3686 

strain eo 

Uniform 
traction oo 

1.0314 0.6742 

K,( + a)/ Ko K~(- a)/ Ko 

2.0144 0.4158 

1.1636 0.7231 

K~( + a)/ Ko K~(- a)/ Ko 

2.0601 0.4319 

1.2088 0.7395 

KI( + a)/ Ko K , ( -  a)/ go 

2.063 0.433 

1.222 0.745 

(*) :  Delale and Erdogan (1983) 
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under linear strain ( .r /a)s, :  or(x): - ggt.v/toCaV/(l 
(I ~ Z) and z, 0.3 

Fig. 6 

c r a c k s  are  seen to be af fec ted  to a lesser ex ten t  by 

the  n o n h o m o g e n e i t y  p a r a m e t e r  ~a.  

In Figs.  5 - - 7 ,  c rack  openi~lg d i s p l a c e m e n t s  are  

p r o v i d e d  for the  u n i f o r m  s t ra in  co. the  l inear  
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Fig. 7 Normalized crack opening displacements 2v(x, 
O)/vo for different values of the crack spacing I ' =  
a/(a+h) and the nonhomogeneity parameter /~a 
under uniform traction a(,: a(x)-- ao and v:=0. 
3 

Table  3 Effect of Poisson's ratio 7r on the normal- 
ized stress intensity factors KI(+ a)/Ko for 
different values of the crack spacing I ' - a ~  
(a+h) and the nonhomogeneity parameter 
/?a under uniform strain eo: o ( x ) = - - 8  

Eof~oe~/( 1 + x) 

3a=O,O 

0.05 0.9309 0.9309 

0.101 0.9309 0.9309 
0.20] 0.93(t9 0.9309 

0.301 0.9309 0.9309 
0.40 0.9309 0.9309 

0.45 0.9309 0.9309 

F = 0 . 2  

,@ = 0.5 ~?a = 1.0 

~;t(+a)./// (~( a)/K (~(+a)/l~ k'L( a)/Ko 
1.3678 0.6245 1.9875 0.4077 
1.3686 0.6249 1.9921 0.4090 

1.3704 0.6259 2.0023 0.4121 

1.3726 0.6271 2.0144 0.4158 

1.3755 0.6287 2.0292 0.4202 

1.3773 0.6297 2.0379 0.4227 

/?a = 0.0 
v s a)./E 

0.05 0.5702 0.57~- 

010 0.5702 0.5702 
0.20 0.57020.5702 

0.30 0.570210.5702 

0.40 0.5702 10.5702 
0.45 0.5702 [0_5702 

F = 0 . 5  

~'a = 0.5 /?a = 1.0 

K~(+a)/K~,( a)./~ ~ l ( * a } / / ~  KI( a)/Ko 
0.~9008 10.3617 114244 0.2303 

0.9008 10.3617 1.4245 0.2302 

0.9008 10.3617 1.4247 0.2302 

0.9008 10.3617 1.4249 0.2301 

0.900810.3617 1.4252 0.2300 

_05_900_ 810.3617 1.4253 0.2300 

"Fable 4 Effect of Poisson's ratio v on the normal- 
ized stress intensity factors K~(+ a)/Ko for 
different values of the crack spacing F =  a~ 
(a + h) and the nonhomogeneity parameter 
/2a under uniform strain ao: a(x) = --C~o 

/"=0.2 

72 

0~5 
0.10 

0.20 

0.30 

0.40 

0.45 

-  Foo =1o 

0.9309 0.930    ,44810.8 9  11. 446 0.715  
0.9309 0.9309 1.046510.8206 ]1.1533 0.7188 
0.9309 0.9309 1.0485 ] 0.821911.1636 0.7231 
0.9309 0.9309 1.051210.823611.1760 0.7283 

0:9309 0.9309 ~ ~ 1 1 8 3 2  0.73% 

F = 0 . 5  

o.T-  

0.05' 0.5702 0 1 5 ~  [ 0.604210.539810.6430 0.5120- 

0.10 0.5702 0.5702 [ 0.604210.539810.6429 0.5120 
I I I 

020 0.5702 0570210.604210 398 i0.6428 0.5121 
0.30 0.5702 0.570210.604110.539810.6426 0.5122 

I I I 
0.5702 0.5702 0.40 10.604110.5398 10.6424 0.5122 

0.45j_0:~70s ?.5702 Lo 6041 0j222.~3 ~ 0.6422 0.512s 

strain (x /a)e l ,  and the uniform crack surface 

traction do, respectively. To be noted from these 

figures is that the decrease in the spacing among 

nearby interacting cracks greatly restrains the 

crack opening,  leading to an increasingly fiat 

slope along the axes of cracks. Figures 5 and 7 

further demonstrate that as /~a increases, the 

displacements are being shifted from the shape of  

symmetric curves in the homogeneous medium to 

that of  skewed curves with respect to the center- 

line of the cracks, where the less stiff por t ion of 

the nonhomogenous  medium has larger crack 

opening displacements than the homogeneous 

medium. Such an asymmetric crack shape is 

part icularly noticeable for the nonhomogeneous  

medium that is subjected to uniform crack surface 

traction as illustrated in Fig. 7. With the imposi- 

t ion of a line~r strain, it is shown in Fig. 6 that 

the left halves ot the cracks are closed, consistent 

with the negative values of stress intensity factors 

at x = - a  as given in Fig. 3. 

Some addit ional  results are presented Tables 3 
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and 4 to examine the effect of  variations of  

Poisson's ratio ~ on the stess intensity factors for 

different values of F and/~a. Each table is for the 

medium under a uniform strain ~o and uniform 

crack surface traction ~o. It is observed that the 

effect of  v appears to become more notable for 

greater values of/3a and smaller values o fF ' .  The 

difference in magnitudes of the stress intensity 

factor,; for the given range of  0.05_< v_<0.45 may 

be estimated to be as high as 3.6 percent when fla 

= 1.0 and / ' = 0 . 2 .  It is likely, however, that the 

values of 7,, vary within an even narrower range 

than the above so that the effect of  Poisson's ratio 

is negligibly small. As a result, similar to the 

previous findings for a single crack in a non- 

homogeneous medium (Delale and Erdogan, 

1983; Ozturk and Erdogan, 1993), the assumption 

of neglecting the possible spatial variation of 

Poisson's ratio in the nonhomogeneous medium 

is not a very restrictive one that can be physically 

justified. 

4. Closure 

The analysis of functionally graded materials 

containing a periodic array of  parallel cracks has 

been performed within the framework of non- 

homogeneous  plane e las t ic i ty .  The non- 

homogeneous property distribution was approx- 

imated by expressing the elastic modulus in the 

form of an exponential function that renders the 

current crack problem amenable to analytical 

treatment via the use of Fourier  transform tech- 

niques. In consequence, a hypersingular integral 

equation was derived with the crack surface 

displacement as a new unknown function. The 

main emphasis was then placed upon the evalua- 

tion of stress intensity factors from the square root 

singular behavior at the crack tips, based on 

standard methods of linear elastic fracture 

mechanics. Some selected numerical values were 

illustrated under fixed-grip strain and uniform 

crack surface loadings. As a result, the parametric 

effects of crack spacing were addressed in con- 

junction with the material nonhomogeneity and 

different values of Poisson's ratio. The crack 

opening displacements were also presented for 

various geometric and material combinations to 

provide further physical into the behavior of an 

array of multiple cracks in functionally graded, 

nonhomogeneous media. 
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